Search results for "TRANS-GOLGI NETWORK"

showing 4 items of 4 documents

Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking.

2021

Abstract The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere wi…

0106 biological sciencesPhysiologyEndocytic cycleArabidopsisBREFELDIN-APlant Science01 natural sciencesPROTEIN TRAFFICKINGNaphthaleneacetic AcidsPlant Growth RegulatorsGOLGI-APPARATUSheterocyclic compoundsInternalizationResearch Articlesmedia_commonchemistry.chemical_classification0303 health sciencesAcademicSubjects/SCI01270biologyAcademicSubjects/SCI02288AcademicSubjects/SCI02287AcademicSubjects/SCI02286food and beveragesCorrigendaEndocytosisCell biologyProtein TransportMEMBRANE TRAFFICKINGIntracellulartrans-Golgi NetworkGNOM ARF-GEFAcademicSubjects/SCI01280media_common.quotation_subjectEndocytosisClathrin03 medical and health sciencesAuxinGeneticsEndomembrane systemVACUOLAR TRAFFICKINGPLANT030304 developmental biologyIndoleacetic AcidsArabidopsis ProteinsMEDIATES ENDOCYTOSISCell MembraneBiology and Life SciencesTransporterTRANSPORTchemistrybiology.proteinARABIDOPSIS-THALIANA010606 plant biology & botanyPlant physiology
researchProduct

Molecular mechanisms of endomembrane trafficking in plants

2021

Abstract Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, …

AcademicSubjects/SCI01280EndosomeENDOPLASMIC-RETICULUMGolgi ApparatusPlant ScienceSUSPENSION-CULTURED CELLSBiologyDOMAIN-CONTAINING PROTEINSEndoplasmic ReticulumEndocytosissymbols.namesakeLysosomeAutophagymedicineEndomembrane systemVACUOLAR TRAFFICKINGPlant Physiological PhenomenaLate endosomeAcademicSubjects/SCI01270AcademicSubjects/SCI02288AcademicSubjects/SCI02287Endoplasmic reticulumAcademicSubjects/SCI02286AutophagyBiology and Life SciencesBiological TransportRETICULUM EXPORT SITESCell BiologyGolgi apparatusCLATHRIN-MEDIATED ENDOCYTOSISEndocytosisFocus on Cell BiologyCell biologyTRANS-GOLGI NETWORKEditorialmedicine.anatomical_structureP24 FAMILY PROTEINSMEMBRANE TRAFFICKINGPLASMA-MEMBRANEVacuolessymbolsThe Plant Cell
researchProduct

Stx5 is a novel interactor of VLDL-R to affect its intracellular trafficking and processing

2012

We identified syntaxin 5 (Stx5), a protein involved in intracellular vesicle trafficking, as a novel interaction partner of the very low density lipoprotein (VLDL)-receptor (VLDL-R), a member of the LDL-receptor family. In addition, we investigated the effect of Stx5 on VLDL-R maturation, trafficking and processing. Here, we demonstrated mutual association of both proteins using several in vitro approaches. Furthermore, we detected a special maturation phenotype of VLDL-R resulting from Stx5 overexpression. We found that Stx5 prevented advanced Golgi-maturation of VLDL-R, but did not cause accumulation of the immature protein in ER, ER to Golgi compartments, or cis-Golgi ribbon, the main ex…

Low-density lipoprotein receptor-related protein 8Very Low-Density Lipoprotein ReceptorCHO CellsSTX5Biologysymbols.namesakeCricetulusCricetinaeAnimalsHumansSyntaxinSecretory PathwayQa-SNARE ProteinsCell Membranenutritional and metabolic diseasesIntracellular vesicleHep G2 CellsCell BiologyGolgi apparatusCell biologyProtein TransportHEK293 CellsReceptors LDLLDL receptorsymbolslipids (amino acids peptides and proteins)Protein Processing Post-TranslationalIntracellularProtein Bindingtrans-Golgi NetworkExperimental Cell Research
researchProduct

Identification of Trans-Golgi Network Proteins in Arabidopsis thaliana Root Tissue

2014

Knowledge of protein subcellular localization assists in the elucidation of protein function and understanding of different biological mechanisms that occur at discrete subcellular niches. Organelle-centric proteomics enables localization of thousands of proteins simultaneously. Although such techniques have successfully allowed organelle protein catalogues to be achieved, they rely on the purification or significant enrichment of the organelle of interest, which is not achievable for many organelles. Incomplete separation of organelles leads to false discoveries, with erroneous assignments. Proteomics methods that measure the distribution patterns of specific organelle markers along densit…

ProteomicsArabidopsis thalianaArabidopsisorganelle proteomicsProteomicsPlant RootsBiochemistryArticlesymbols.namesakeArtificial IntelligenceTandem Mass SpectrometryArabidopsisOrganelleArabidopsis thalianaChromatography Reverse-PhaseimmunoisolationbiologyArabidopsis Proteinstrans-Golgi networkGeneral ChemistryGolgi apparatusbiology.organism_classificationSubcellular localizationLOPITCell biologyIsobaric labelingphenoDiscomachine learningsymbolsIdentification (biology)Journal of Proteome Research
researchProduct